Bounds on übercrossing and petal numbers for knots

Author:

Adams Colin1,Capovilla-Searle Orsola2,Freeman Jesse1,Irvine Daniel3,Petti Samantha1,Vitek Daniel4,Weber Ashley5,Zhang Sicong6

Affiliation:

1. Bronfman Science Center, Williams College, Williamstown, MA 01267, USA

2. Department of Mathematics, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr, PA 19010-2899, USA

3. Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA

4. Department of Mathematics, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA

5. Mathematics Department, Brown University, Box 1917, 151 Thayer Street, Providence, RI 02912, USA

6. Department of Mathematics, Stanford University, 450 Serra Mall Building 380, Stanford, CA 94305-2125, USA

Abstract

An n-crossing is a point in the projection of a knot where n strands cross so that each strand bisects the crossing. An übercrossing projection has a single n-crossing and a petal projection has a single n-crossing such that there are no loops nested within others. The übercrossing number, ü(K), is the smallest n for which we can represent a knot K with a single n-crossing. The petal number is the number of loops in the minimal petal projection. In this paper, we relate the übercrossing number and petal number to well known invariants such as crossing number, bridge number, and unknotting number. We find that the bounds we have constructed are sharp for (r, r + 1)-torus knots. We also explore the behavior of übercrossing number under composition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A lower bound on the average genus of a 2-bridge knot;Journal of Knot Theory and Its Ramifications;2023-08

2. Virtual multicrossings and petal diagrams for virtual knots and links;Journal of Knot Theory and Its Ramifications;2023-06-27

3. Petal number of torus knots using superbridge indices;Journal of Knot Theory and Its Ramifications;2022-11

4. Petal projections, knot colorings and determinants;Involve, a Journal of Mathematics;2022-07-29

5. Triple-crossing number and moves on triple-crossing link diagrams;Journal of Knot Theory and Its Ramifications;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3