Affiliation:
1. Department of Mathematics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
Abstract
For a finite graph [Formula: see text], let [Formula: see text] be the right-angled Artin group defined by the complement graph of [Formula: see text]. We show that, for any linear forest [Formula: see text] and any finite graph [Formula: see text], [Formula: see text] can be embedded into [Formula: see text] if and only if [Formula: see text] can be realized as a full subgraph of [Formula: see text]. We also prove that if we drop the assumption that [Formula: see text] is a linear forest, then the above assertion does not hold, namely, for any finite graph [Formula: see text], which is not a linear forest, there exists a finite graph [Formula: see text] such that [Formula: see text] can be embedded into [Formula: see text], though [Formula: see text] cannot be embedded into [Formula: see text] as a full subgraph.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献