UPPER BOUNDS IN THE OHTSUKI–RILEY–SAKUMA PARTIAL ORDER ON 2-BRIDGE KNOTS

Author:

GARRABRANT SCOTT M.1,HOSTE JIM1,SHANAHAN PATRICK D.2

Affiliation:

1. Pitzer College, 1050 N. Mills Ave, Claremont, CA 91711, USA

2. Department of Mathematics, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA

Abstract

In this paper we use continued fractions to study a partial order on the set of 2-bridge knots derived from the work of Ohtsuki, Riley, and Sakuma. We establish necessary and sufficient conditions for any set of 2-bridge knots to have an upper bound with respect to the partial order. Moreover, given any 2-bridge knot K1 we characterize all other 2-bridge knots K2 such that {K1, K2} has an upper bound. As an application we answer a question of Suzuki, showing that there is no upper bound for the set consisting of the trefoil and figure-eight knots.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating functions on epimorphisms between 2-bridge knot groups;Journal of Knot Theory and Its Ramifications;2021-08

2. Crosscap number and epimorphisms of two-bridge knot groups;Journal of Knot Theory and Its Ramifications;2021-05-18

3. Symplectic quandles and parabolic representations of 2-bridge knots and links;International Journal of Mathematics;2020-08-20

4. Remarks on Suzuki’s knot epimorphism number;Journal of Knot Theory and Its Ramifications;2019-08

5. Epimorphisms between 2–bridge knot groups and their crossing numbers;Algebraic & Geometric Topology;2017-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3