Affiliation:
1. Department of Mathematics, The University of Iowa, USA
Abstract
The topology of [Formula: see text]-representation varieties of the fundamental groups of planar webs so that the meridians are sent to matrices with trace equal to [Formula: see text] are explored, and compared to data coming from spider evaluation of the webs. Corresponding to an evaluation of a web as a spider is a rooted tree. We associate to each geodesic [Formula: see text] from the root of the tree to the tip of a leaf an irreducible component [Formula: see text] of the representation variety of the web, and a graded subalgebra [Formula: see text] of [Formula: see text]. The spider evaluation of geodesic [Formula: see text] is the symmetrized Poincaré polynomial of [Formula: see text]. The spider evaluation of the web is the sum of the symmetrized Poincaré polynomials of the graded subalgebras associated to all maximal geodesics from the root of the tree to the leaves.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dimers, webs, and local systems;Transactions of the American Mathematical Society;2023-10-04