Walks along braids and the colored Jones polynomial

Author:

Armond Cody W.1

Affiliation:

1. Department of Mathematics, University of Iowa, Iowa City, IA, USA

Abstract

Using the Huynh and Lê quantum determinant description of the colored Jones polynomial, we construct a new combinatorial description of the colored Jones polynomial in terms of walks along a braid. We then use this description to show that for a knot which is the closure of a positive braid, the first N coefficients of the N th colored Jones polynomial are trivial.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the geometry of two state models for the colored Jones polynomial;Journal of Knot Theory and Its Ramifications;2024-02

2. Braid representatives minimizing the number of simple walks;Ars Mathematica Contemporanea;2022-11-21

3. Bowling ball representations of braid groups;Journal of Knot Theory and Its Ramifications;2018-04

4. A -series identity via the ₃ colored Jones polynomials for the (2,2)-torus link;Proceedings of the American Mathematical Society;2018-03-20

5. The head and tail of the colored Jones polynomial for adequate knots;Proceedings of the American Mathematical Society;2016-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3