Affiliation:
1. Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
Abstract
We investigate Vassiliev homotopy invariants of string links, and find that in this particular case, most of the questions left unanswered in [3] can be answered affirmatively, In particular, Vassiliev invariants classify string links up to homotopy, and all Vassiliev homotopy string link invariants come from marked surfaces as in [3], using the same construction that in the case of knots gives the HOMFLY and Kauffman polynomials. In addition, the Milnor μ invariants of string links are shown to be Vassiliev invariants, and it is re-proven, by elementary means, that Vassiliev invariants classify braids.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献