Resolving critical degrees of entanglement in Olympic ring systems

Author:

Igram Spencer1,Millett Kenneth C.1,Panagiotou Eleni1

Affiliation:

1. Department of Mathematics, University of California, Santa Barbara, CA 93106, USA

Abstract

Olympic systems are collections of small ring polymers whose aggregate properties are largely characterized by the extent (or absence) of topological linking in contrast with the topological entanglement arising from physical movement constraints associated with excluded volume contacts or arising from chemical bonds. First, discussed by de Gennes, they have been of interest ever since due to their particular properties and their occurrence in natural organisms, for example, as intermediates in the replication of circular DNA in the mitochondria of malignant cells or in the kinetoplast DNA networks of trypanosomes. Here, we study systems that have an intrinsic one, two, or three-dimensional character and consist of large collections of ring polymers modeled using periodic boundary conditions. We identify and discuss the evolution of the dimensional character of the large scale topological linking as a function of density. We identify the critical densities at which infinite linked subsystems, the onset of percolation, arise in the periodic boundary condition systems. These provide insight into the nature of entanglement occurring in such course grained models. This entanglement is measured using Gauss linking number, a measure well adapted to such models. We show that, with increasing density, the topological entanglement of these systems increases in complexity, dimension, and probability.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3