Affiliation:
1. Department of Mathematics, Yale University, 10 Hillhouse Ave., PO Box 208283, New Haven, CT 06520, USA
Abstract
The classical knot groups are the fundamental groups of the complements of smooth or piecewise-linear (PL) locally-flat knots. For PL knots that are not locally-flat, there is a pair of interesting groups to study: the fundamental group of the knot complement and that of the complement of the "boundary knot" that occurs around the singular set, the set of points at which the embedding is not locally-flat. If a knot has only point singularities, this is equivalent to studying the groups of a PL locally-flat disk knot and its boundary sphere knot; in this case, we obtain a complete classification of all such group pairs in dimension ≥6. For more general knots, we also obtain complete classifications of these group pairs under certain restrictions on the singularities. Finally, we use spinning constructions to realize further examples of boundary knot groups.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A non-classification result for wild knots;Transactions of the American Mathematical Society;2017-04-24
2. KNOT GROUPS AND SLICE CONDITIONS;Journal of Knot Theory and Its Ramifications;2008-12
3. Knot Spinning;Handbook of Knot Theory;2005