Affiliation:
1. Jordan University of Science and Technology, Ar Ramtha, Irbid, Jordan
Abstract
In [Dichromatic link invariants, Trans. Amer. Math. Soc. 321(1) (1990) 197–229], Hoste and Kidwell investigated the skein theory of oriented dichromatic links in [Formula: see text]. They introduced a multi-variable polynomial invariant [Formula: see text]. We use special substitutions for some of the parameters of the invariant [Formula: see text] to show how to deduce invariants of finite type from [Formula: see text] using partial derivatives. Then we consider the 2-component 1-trivial dichromatic links. We study the Vassiliev invariants of the 2-component in the complement of the 1-component, which is equivalent to studying Vassiliev invariants for knots in [Formula: see text] We give combinatorial formulas for the type-zero and type-one invariants and we connect these invariants to existing invariants such as Aicardi's invariant. This provides us with a topological meaning of the first partial derivative, which is also shown to be universal as a type-one invariant.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献