Efficient Expression, Purification and Functional Evaluation of Human Epidermal Growth Factor-Collagen Binding Domain Hybrid Protein on Growth Stimulation of Human Fibroblast Cells

Author:

Parsaei Asghar12,Shahsavarani Hosein34,Noormohammadi Zahra2,Irani Shiva2,Shokrgozar Mohammadali1

Affiliation:

1. Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran

2. Islamic Azad University, Science and Research Branch, Tehran, Iran

3. Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran

4. Department of Cellular and Molecular Sciences, Faculty of Bioscience and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Growth factors such as human epidermal growth factor (hEGF) have recently received high interest in regenerative medicine and pharmaceutical industries mainly due to their ability to restore tissues proliferation and improvement of their biological functions. In spite of various hEGF applications, its efficient expression in Escherichia coli could not yet reach an industrial reality mainly due to the lack of the ability of folding into the correct 3D structure because of three disulfide bonds in monomer hEGF. To address these challenges, here a fusion hEGF protein with a C terminus of collagen binding domain (CBD) along with intein protein with self-splicing property and ELP sequence was constructed by a three-step cloning procedure. This enabled us to purify recombinant hEGF without using chromatography columns. Following the confirmation of the construct by colony PCR, restriction enzymes analysis and sequencing, the 62[Formula: see text]kDa band of ELP-INTEIN-hEGF-CBD were observed on SDS-PAGE and confirmed by western blotting. Subsequently, the mitotic activity in Balb/c 3T3 cells proliferation in presence of recombinant hEGF-CBD compared with commercial hEGF using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which showed that our purified recombinant protein stimulates the cell proliferation similar to the commercial protein. Our strategy could be considered as a new feasible approach to produce hEGF in E. coli for pharmaceutical and clinical applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3