Affiliation:
1. Financial Economics Graduate Program, Yeditepe University, 34755 Istanbul, Turkey
Abstract
In this paper, dynamic four-dimensional (4D) correlation of eastern and western markets is analyzed. A wavelet-based scale-by-scale analysis method has been introduced to model and forecast stock market data for strongly correlated time intervals. The daily data of stock markets of SP500, FTSE and DAX (western markets) and NIKKEI, TAIEX and KOSPI (eastern markets) are obtained from 2009 to the end of 2016 and their co-movement dependencies on time–frequency space using 4D multiple wavelet coherence (MWC) are determined. Once the data is detached into levels of different frequencies using scale-by-scale continuous wavelet transform, all of the time series possessing the same frequency scale are selected, inversed and forecasted using multivariate model, vector autoregressive moving average (VARMA). It is concluded that the efficiency of forecasting is increased substantially using the same-frequency highly correlated time series obtained by scale-by-scale wavelet transform. Moreover, the increasing or decreasing trend of prospected price shift is foreseen fairly well.
Publisher
World Scientific Pub Co Pte Lt
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献