Carbon trading price forecasting based on parameter optimization VMD and deep network CNN–LSTM model

Author:

Ling Meijun1ORCID,Cao Guangxi123ORCID

Affiliation:

1. School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

2. Faculty of Business, City University of Macau, Macao 999078, P. R. China

3. School of Digital Economy and Management, Wuxi University, Wuxi 214105, P. R. China

Abstract

To meet carbon peak and neutrality targets, accurate carbon trading price forecasting is very important for enterprises making emission reduction decisions. By fusing convolutional neural network (CNN) and long short-term memory network (LSTM), the CNN–LSTM model is constructed. After variational mode decomposition (VMD), several intrinsic mode functions (IMFs) components are obtained and input into the CNN–LSTM model, thus constructing the combined sooty tern optimization algorithm (STOA)–VMD–CNN–LSTM forecasting model. To test this model, the carbon trading prices of the carbon emission trading markets of Hubei, Guangdong and Shenzhen were forecast. The prediction performance of the STOA–VMD–CNN–LSTM model is compared with ARIMA, BP, CNN and LSTM benchmark models and models combining different decomposition technologies. The international carbon trading price (EUR and CER) is used for prediction. Compared with other methods, the developed model makes fewer errors and achieves superior performance. Several important implications are provided for investors and risk managers involved in carbon financial products.

Funder

National Social Science Fund of China

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3