Dynamic financial distress prediction based on class-imbalanced data batches

Author:

Sun Jie1,Liu Xin2,Ai Wenguo3,Tian Qianyuan4

Affiliation:

1. Business School, Tianjin University of Finance and Economics, Tianjin 300222, P. R. China

2. School of Economics and Management, Zhejiang Normal University, Jinhua Zhejiang Province 321004, P. R. China

3. School of Management, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, P. R. China

4. Finance Office, Institute of Exploration Techniques, China Geological Survey, Tianjin 300300, P. R. China

Abstract

This study proposes two approaches for dynamic financial distress prediction (FDP) based on class-imbalanced data batches by considering both concept drift and class imbalance. One is based on sliding time window and synthetic minority over-sampling technique (SMOTE) and the other is based on sliding time window and majority class partition. Support vector machine, multiple discriminant analysis (MDA) and logistic regression are used as base classifiers in the experiments on a real-world dataset. The results indicate that the two approaches perform better than the pure dynamic FDP (DFDP) models without class imbalance processing and the static FDP models either with or without class imbalance processing.

Funder

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3