Predicting the trend of stock index based on feature engineering and CatBoost model

Author:

Xu Renzhe1,Chen Yudong1,Xiao Tenglong1,Wang Jingli1,Wang Xiong1

Affiliation:

1. Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, P. R. China

Abstract

As an important tool to measure the current situation of the whole stock market, the stock index has always been the focus of researchers, especially for its prediction. This paper uses trend types, which are received by clustering price series under multiple time scale, combined with the day-of-the-week effect to construct a categorical feature combination. Based on the historical data of six kinds of Chinese stock indexes, the CatBoost model is used for training and predicting. Experimental results show that the out-of-sample prediction accuracy is 0.55, and the long–short trading strategy can obtain average annualized return of 34.43%, which is a great improvement compared with other classical classification algorithms. Under the rolling back-testing, the model can always obtain stable returns in each period of time from 2012 to 2020. Among them, the SSESC’s long–short strategy has the best performance with an annualized return of 40.85% and a sharp ratio of 1.53. Therefore, the trend information on multiple time-scale features based on feature engineering can be learned by the CatBoost model well, which has a guiding effect on predicting stock index trends.

Publisher

World Scientific Pub Co Pte Lt

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Factor Models and Gradient Boosting for Improved Factor Selection;International Conference on Algorithms, Software Engineering, and Network Security;2024-04-26

2. A COMPREHENSIVE COMPARATIVE STUDY OF MACHINE LEARNING MODELS FOR PREDICTING CRYPTOCURRENCY;FACTA UNIV-SER ELECT;2024

3. Trading patterns of institutional investors: applications of machine learning;Applied Economics Letters;2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3