Robust nonparametric estimation for the volatility of financial market

Author:

Kao Chunyu1,Song Yuping2

Affiliation:

1. Institute for Financial Studies, Shandong University, Jinan 250100, P. R. China

2. School of Finance and Business, Shanghai Normal University, Shanghai 200234, P. R. China

Abstract

The occurrence of a macroeconomic policy would lead to a jump of financial data and the presence of jump behaviors might make the statistical methods for high-frequency sampling data to face new challenges. This paper will use the threshold function technique to disentangle the continuous part and the jump part from the high frequency financial data. Moreover, in the financial practices, the abnormal observations contained in the data could cause bias from nonparametric estimation based on least squares. The paper will employ the local M estimation to provide a robust estimator for the unknown diffusion coefficient of the diffusion model with jumps under high frequency sampling data. Under certain conditions for the initial values, this paper further considers one-step local M estimation for the unknown diffusion coefficient which can reduce the calculation quantity under the estimation efficiency. The Monte Carlo numerical simulation results verify that compared with the local linear threshold estimator, the threshold one-step local M estimator is more accurate and more robust. Finally, the threshold one-step local M estimator in this paper is applied to the Shanghai composite index of 2015 and 2020 in China and the Nasdaq index of 2020 in USA, which illustrates the method considered in this paper possesses good finite sample properties.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3