Does Universal Controllability of Physical Systems Prohibit Thermodynamic Cycles?

Author:

Janzing Dominik1,Wocjan Paweł2

Affiliation:

1. Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076, Tübingen, Germany

2. Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, FL 32816, USA

Abstract

Here we study the thermodynamic cost of computation and control using ‘physically universal’ cellular automata (CAs) or Hamiltonians. The latter were previously defined as systems that admit the implementation of any desired transformation on a finite target region by first initializing the state of the surrounding and then letting the system evolve according to its autonomous dynamics. This way, one obtains a model of control where each region can play both roles, the controller or the system to be controlled. In physically universal systems every degree of freedom is indirectly accessible by operating on the remaining degrees of freedom. In a nutshell, the thermodynamic cost of an operation is then given by the size of the region around the target region that needs to be initialized. In the meantime, physically universal CAs have been constructed by Schaeffer (in two dimensions) and Salo & Törmä (in one dimension). Here we show that in Schaeffer’s CA the cost for implementing n operations grows linearly in n, while operating in a thermodynamic cycle requires sublinear growth to ensure zero cost per operation in the limit n → ∞. Although this particular result need not hold for general physically universal CAs, this strong notion of universality does imply a certain kind of instability of information, which could result in lower bounds on the cost of protecting information from its noisy environment. The technical results of the paper are sparse and quite simple. The contribution of the paper is mainly conceptual and consists in illustrating the type of thermodynamic questions raised by models of control that rely on the concept of physical universality.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3