A Rigidity Property of Complete Systems of Mutually Unbiased Bases

Author:

Matolcsi Máté12,Weiner Mihály13

Affiliation:

1. Department of Analysis, Institute of Mathematics, Budapest University of Technology and Economics, Muegyetem rkp. 3., H–1111 Budapest, Hungary

2. Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H–1053, Realtanoda u 13-15, Budapest, Hungary

3. Hungary and MTA-BME Lendület Quantum Information Theory Research Group, Hungary

Abstract

Suppose that for some unit vectors [Formula: see text] in [Formula: see text] we have that for any [Formula: see text]   [Formula: see text] is either orthogonal to [Formula: see text] or [Formula: see text] (i.e., [Formula: see text] and [Formula: see text] are unbiased). We prove that if [Formula: see text], then these vectors necessarily form a complete system of mutually unbiased bases, that is, they can be arranged into [Formula: see text] orthonormal bases, all being mutually unbiased with respect to each other.

Funder

NKFI

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3