Affiliation:
1. Leibniz Universität Hannover, Institut für Theoretische Physik, Germany
2. Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
3. National Research University Higher School of Economics, Russia
Abstract
Dynamical semigroups have become the key structure for describing open system dynamics in all of physics. Bounded generators are known to be of a standard form, due to Gorini, Kossakowski, Sudarshan and Lindblad. This form is often used also in the unbounded case, but rather little is known about the general form of unbounded generators. In this paper we first give a precise description of the standard form in the unbounded case, emphasizing intuition, and collecting and even proving the basic results around it. We also give a cautionary example showing that the standard form must not be read too naively. Further examples are given of semigroups, which appear to be probability preserving to first order, but are not for finite times. Based on these, we construct examples of generators which are not of standard form.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献