Affiliation:
1. Linnaeus University, International Center for Mathematical Modeling in Physics and Cognitive Sciences, Växjö, SE–351 95, Sweden
Abstract
Recently, the quantum formalism and methodology have been used in application to the modelling of information processing in biosystems, mainly to the process of decision making and psychological behaviour (but some applications in microbiology and genetics are considered as well). Since a living system is fundamentally open (an isolated biosystem is dead), the theory of open quantum systems is the most powerful tool for life-modelling. In this paper, we turn to the famous Schrödinger’s book “What is life?” and reformulate his speculations in terms of this theory. Schrödinger pointed to order preservation as one of the main distinguishing features of biosystems. Entropy is the basic quantitative measure of order. In physical systems, entropy has the tendency to increase (Second Law of Thermodynamics for isolated classical systems and dissipation in open classical and quantum systems). Schrödinger emphasized the ability of biosystems to beat this tendency. We demonstrate that systems processing information in the quantum-like way can preserve the order-structure expressed by the quantum (von Neumann or linear) entropy. We emphasize the role of the special class of quantum dynamics and initial states generating the camel-like graphs for entropy-evolution in the process of interaction with a new environment [Formula: see text]: 1) entropy (disorder) increasing in the process of adaptation to the specific features of [Formula: see text]; 2) entropy decreasing (order increasing) resulting from adaptation; 3) the restoration of order or even its increase for limiting steady state. In the latter case the steady state entropy can be even lower than the entropy of the initial state.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献