Affiliation:
1. Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5, 87–100 Toruń, Poland
Abstract
The Bogoliubov-Lee-Huang theory of superfluid 4He is modified by introducing an effective temperature scale (which accounts for the deep well of the interatomic potential) and by incorporating into the Hamiltonian a stochastic term Vl, which simulates liquidity of HeI and liquidity of the normal and superfluid component of HeII. Vl depends on two independent random angles αn, αs ∈ [0, π], which characterize the locally ordered motion of the two fluids (the normal fluid and superfluid) comprising HeII. The resulting thermodynamics improves the thermodynamic functions and excitation spectrum Ep(αn, αs) of the superfluid phase, obtained previously, leaving the heat capacity CV (T) of the normal phase, with a minimum at Tmin > 2.17K, unchanged. The theoretical velocity of sound in HeII, equal to the initial slope of Ep(π, π), agrees with experiment.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献