Anomalies in Strongly Coupled Harmonic Quantum Brownian Motion II

Author:

Giraldi F.12,Petruccione F.12

Affiliation:

1. Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, South Africa

2. National Institute for Theoretical Physics, KwaZulu-Natal, Westville Campus, Durban 4000, South Africa

Abstract

The analysis of a strongly coupled harmonic quantum Brownian motion has been performed in [1] for a special class of spectral densities obtained as a generalization of the Drude model. In the present scenario, we extend the study of the strongly coupled harmonic quantum Brownian motion to regular spectral densities that are structured as sub-Ohmic at low frequencies and arbitrarily shaped at high frequencies. The bosonic environment is initially in the vacuum state unentangled from the coherent state of the main oscillator. As a generalization of the previous results, we obtain that the long time dynamics is determined uniquely by the initial condition and the low frequency structure of the spectral density. Also in the present framework, inverse power law regressions to the asymptotics appear. The position and the momentum tend to undamped oscillations. The number of excitations relaxes to its initial value with damped oscillations enveloped in inverse power law relaxations. For the momentum and the number of excitations the inverse power law decays become arbitrarily slow in critical configurations by approaching the upper bound of the sub-Ohmic regime. The critical frequencies of the main oscillator are determined by the first negative moment of the spectral densities. Differences with respect to the weak coupling regime arise.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3