Vulnerability Rating of Source Code with Token Embedding and Combinatorial Algorithms

Author:

Barr Joseph R.1,Shaw Peter23,Abu-Khzam Faisal N.4,Thatcher Tyler1,Yu Sheng5

Affiliation:

1. Acronis SCS, Scottsdale, Arizona, USA

2. Nanjing University of Information Science & Technology, Jiangsu, P. R. China

3. School of Child Health, Menzies Darwin, Australia

4. Lebanese American Univ., Beirut, Lebanon

5. University of California, Riverside, USA

Abstract

We present an empirical analysis of the source code of the Fluoride Bluetooth module, which is a part of standard Android OS distribution, by exhibiting a novel approach for classifying and scoring source code and vulnerability rating. Our workflow combines deep learning, combinatorial optimization, heuristics and machine learning. A combination of heuristics and deep learning is used to embed function (and method) labels into a low-dimensional Euclidean space. Because the corpus of the Fluoride source code is rather limited (containing approximately 12,000 functions), a straightforward embedding (using, e.g. code2vec) is untenable. To overcome the challenge of dearth of data, it is necessary to go through an intermediate step of Byte-Pair Encoding. Subsequently, we embed the tokens from which we assemble an embedding of function/method labels. Long short-term memory network (LSTM) is used to embed tokens. The next step is to form a distance matrix consisting of the cosines between every pairs of vectors (function embedding) which in turn is interpreted as a (combinatorial) graph whose vertices represent functions, and edges correspond to entries whose value exceed some given threshold. Cluster-Editing is then applied to partition the vertex set of the graph into subsets representing “dense graphs,” that are nearly complete subgraphs. Finally, the vectors representing the components, plus additional heuristic-based features are used as features to model the components for vulnerability risk.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3