NN-VVC: A Hybrid Learned-Conventional Video Codec Targeting Humans and Machines

Author:

Ahonen Jukka I.12ORCID,Le Nam12ORCID,Zhang Honglei1ORCID,Hallapuro Antti1ORCID,Cricri Francesco1ORCID,Tavakoli Hamed Rezazadegan3ORCID,Hannuksela Miska M.1ORCID,Rahtu Esa2ORCID

Affiliation:

1. Nokia Technologies, Tampere, Finland

2. Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland

3. Nokia Technologies, Espoo, Finland

Abstract

Advancements in artificial intelligence have significantly increased the use of images and videos in machine analysis algorithms, predominantly neural networks. However, the traditional methods of compressing, storing and transmitting media have been optimized for human viewers rather than machines. Current research in coding images and videos for machine analysis has evolved in two distinct paths. The first is characterized by End-to-End (E2E) learned codes, which show promising results in image coding but have yet to match the performance of leading Conventional Video Codecs (CVC) and suffer from a lack of interoperability. The second path optimizes CVC, such as the Versatile Video Coding (VVC) standard, for machine-oriented reconstruction. Although CVC-based approaches enjoy widespread hardware and software compatibility and interoperability, they often fall short in machine task performance, especially at lower bitrates. This paper proposes a novel hybrid codec for machines named NN-VVC, which combines the advantages of an E2E-learned image codec and a CVC to achieve high performance in both image and video coding for machines. Our experiments show that the proposed system achieved up to −43.20% and −26.8% Bjøntegaard Delta rate reduction over VVC for image and video data, respectively, when evaluated on multiple different datasets and machine vision tasks according to the common test conditions designed by the VCM study group in MPEG standardization activities. Furthermore, to improve reconstruction quality, we introduce a human-focused branch into our codec, enhancing the visual appeal of reconstructions intended for human supervision of the machine-oriented main branch.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3