Hierarchical Time-Aware Summarization with an Adaptive Transformer for Video Captioning

Author:

Cardoso Leonardo Vilela1,Guimarães Silvio Jamil Ferzoli1,do Patrocínio Júnior Zenilton Kleber Gonçalves1

Affiliation:

1. Image and Multimedia Data Science Laboratory (IMSCIENCE), Pontifcia Universidade Catlica de Minas Gerais (PUC Minas), Av. Dom José Gaspar, 500 - Prédio 20, 30535-901, Belo Horizonte, Brazil

Abstract

A coherent description is an ultimate goal regarding video captioning via a couple of sentences because it might also affect the consistency and intelligibility of the generated results. In this context, a paragraph describing a video is affected by the activities used to both produce its specific narrative and provide some clues that can also assist in decreasing textual repetition. This work proposes a model, named Hierarchical time-aware Summarization with an Adaptive Transformer (HSAT), that uses a strategy to enhance the frame selection reducing the amount of information that needed to be processed along with attention mechanisms to enhance a memory-augmented transformer. This new approach increases the coherence among the generated sentences, assessing data importance (about the video segments) contained in the self-attention results and uses that to improve readability using only a small fraction of time spent by the other methods. The test results show the potential of this new approach as it provides higher coherence among the various video segments, decreasing the repetition in the generated sentences and improving the description diversity in the ActivityNet Captions dataset.

Funder

Conselho Nacional de Desenvolvimento Cientifico e Tecnolóogico CNPq

Fundação de Amparo à Pesquisa do Estado de Minas Gerais FAPEMIG

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3