Deep Reinforcement Learning for Robotic Control in High-Dexterity Assembly Tasks — A Reward Curriculum Approach

Author:

Leyendecker Lars1,Schmitz Markus2,Zhou Hans Aoyang3,Samsonov Vladimir3,Rittstieg Marius4,Lütticke Daniel3

Affiliation:

1. Fraunhofer Institute for Production Technology IPT, Steinbachstraße 17, 52074 Aachen, Germany

2. Chair of IT-Management, University of Erlangen-Nuremberg, Lange Gasse 20, 90403 Nuremberg, Germany

3. Institute of Information Management in Mechanical Engineering, RWTH Aachen University, Dennewartstraße 27, 52068 Aachen, Germany

4. Department of Innovation and Digitalization/Data Analytics at BMW AG, Petuelring 130, 80807 Munich, Germany

Abstract

For years, the fully-automated robotic assembly has been a highly sought-after technology in large-scale manufacturing. Yet it still struggles to find widespread implementation in industrial environments. Traditional programming has so far proven to be insufficient in providing the required flexibility and dexterity to solve complex assembly tasks. Research in robotic control using deep reinforcement learning (DRL) advances quickly, however, the transfer to real-world applications in industrial settings is lagging behind. In this study, we apply DRL for robotic motion control to a multi-body contact automotive assembly task. Our focus lies on optimizing the final performance on the real-world setup. We propose a reward-curriculum learning approach in combination with domain randomization to obtain both force-sensitivity and generalizability of the controller’s performance. We train the agent exclusively in simulation and successfully perform the Sim-to-Real transfer. Finally, we evaluate the controller’s performance and robustness on an industrial setup and reflect its adherence to the high standards of automotive production.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3