SimE4KG: Distributed and Explainable Multi-Modal Semantic Similarity Estimation for Knowledge Graphs

Author:

Draschner Carsten Felix1,Jabeen Hajira2,Lehmann Jens3

Affiliation:

1. Machine Learning and Artificial Intelligence Lab, University of Bonn, Bonn, Germany

2. GESIS — Leibniz Institute for the Social Sciences, 50667 Köln, Germany

3. Alexa AI, Amazon, Dresden, Germany

Abstract

In recent years, exciting sources of data have been modeled as knowledge graphs (KGs). This modeling represents both structural relationships and the entity-specific multi-modal data in KGs. In various data analytics pipelines and machine learning (ML), the task of semantic similarity estimation plays a significant role. Assigning similarity values to entity pairs is needed in recommendation systems, clustering, classification, entity matching/disambiguation and many others. Efficient and scalable frameworks are needed to handle the quadratic complexity of all-pair semantic similarity on Big Data KGs. Moreover, heterogeneous KGs demand multi-modal semantic similarity estimation to cover the versatile contents like categorical relations between classes or their attribute literals like strings, timestamps or numeric data. In this paper, we propose the SimE4KG framework as a resource providing generic open-source modules that perform semantic similarity estimation in multi-modal KGs. To justify the computational costs of similarity estimation, the SimE4KG generates reproducible, reusable and explainable results. The pipeline results are a native semantic RDF KG, including the experiment results, hyper-parameter setup and explanation of the results, like the most influential features. For fast and scalable execution in memory, we implemented the distributed approach using Apache Spark. The entire development of this framework is integrated into the holistic distributed Semantic ANalytics StAck (SANSA).

Funder

EU Horizon 2020 project PLATOON

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3