Automatic Domain-Adaptive Sentiment Analysis with SentiMap

Author:

Veltmeijer Emmeke1ORCID,Gerritsen Charlotte1ORCID

Affiliation:

1. Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands

Abstract

Location-based sentiment analysis is a promising field of study with various applications, but faces issues due to location uncertainty and lack of domain specificity. Our proposed solution automatically builds domain-adaptive lexicons for region-specific sentiment analysis. An initial lexicon for location estimation is created using topic modeling on news articles related to the target domain. For sentiment estimation, we start with a preexisting lexicon. Both initial lexicons are expanded recursively with a word embedding trained on social media messages from the target area. The final lexicons are used for location estimation and for automatically assigning sentiment labels to data, which is then used for fine-tuning a BERT transformer network. Our approach is validated in a case study of Amsterdam, demonstrating that both the automatically expanded lexicons and the fine-tuned network outperform their respective baselines. This illustrates how our system can enhance its performance by adapting to the domain, with minimal manual input. Finally, a temporal analysis is performed at different scales, showcasing the model’s ability to automatically detect sentimentally charged events.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3