Automated Hashtag Hierarchy Generation Using Community Detection and the Shannon Diversity Index, with Applications to Twitter and Parler

Author:

Torene Spencer1,Follmann Andrew1,Teague Thomas1,Chang Peter1,Howald Blake1

Affiliation:

1. Thomson Reuters Special Services, LLC, 1410 Spring Hill Road Suite 125, McLean, VA 22102, USA

Abstract

Developing semantic hierarchies from user-created hashtags in social media can provide useful organizational structure to large volumes of data. However, construction of these hierarchies is difficult using established ontologies (e.g. WordNet [C. Fellbaum (ed.), WordNet: An Electronic Lexical Database (MIT Press, Cambridge, MA, 1998)]) due to the differences in the semantic and pragmatic use of words versus hashtags in social media. While alternative construction methods based on hashtag frequency are relatively straightforward, these methods can be susceptible to the dynamic nature of social media, such as hashtags with brief surges in popularity. We drew inspiration from the ecologically based Shannon Diversity Index (SDI) [J. L. Wilhm, Use of biomass units in Shannon’s formula, Ecology 49(1) (1968) 153–156] to create a more representative and resilient method of semantic hierarchy construction that relies upon network-based community detection and a novel, entropy-based ensemble diversity index (EDI) score. The EDI quantifies the contextual diversity of each hashtag, resulting in thousands of semantically related groups of hashtags organized along a general-to-specific spectrum. Through an application of EDI to social media data (Twitter and Parler) and a comparison of our results to prior approaches, we demonstrate our method’s ability to create semantically consistent hierarchies that can be flexibly applied and adapted to a range of use cases.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying Communities with Modularity Metric Using Louvain and Leiden Algorithms;Pertanika Journal of Science and Technology;2024-04-04

2. Privacy Data Measurement and Classification Model Based on Shannon Information Entropy and BP Neural Network;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3