Evaluation of a Model-driven Knowledge Storage and Retrieval IDE for Interactive HRI Systems

Author:

Köster Norman1,Wrede Sebastian2,Cimiano Philipp3

Affiliation:

1. Cluster of Excellence Center in Cognitive Interactive Technology, Cognitive Systems Engineering Group, Bielefeld University, Inspiration 1, Bielefeld 33619, Germany

2. Research Institute for Cognition and Robotics (CoR-Lab), Cluster of Excellence Center in Cognitive Interactive Technology, Cognitive Systems Engineering Group, Bielefeld University, Inspiration 1, Bielefeld 33619, Germany

3. Cluster of Excellence Center in Cognitive Interactive Technology, Semantic Computing Group, Bielefeld University, Inspiration 1, Bielefeld 33619, Germany

Abstract

Efficient storage and querying of long-term human–robot interaction data requires application developers to have an in-depth understanding of the involved domains. Creating syntactically and semantically correct queries in the development process is an error prone task which can immensely impact the interaction experience of humans with robots and artificial agents. To address this issue, we present and evaluate a model-driven software development approach to create a long-term storage system to be used in highly interactive HRI scenarios. We created multiple domain-specific languages that allow us to model the domain and seamlessly embed its concepts into a query language. Along with corresponding model-to-model and model-to-text transformations, we generate a fully integrated workbench facilitating data storage and retrieval. It supports developers in the query design process and allows in-tool query execution without the need to have prior in-depth knowledge of the domain. We evaluated our work in an extensive user study and can show that the generated tool yields multiple advantages compared to the usual query design approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Immersive Interactive Virtual Fish Swarm Simulation Based on Infrared Sensors;International Journal of Pattern Recognition and Artificial Intelligence;2020-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3