Affiliation:
1. School of Electrical and Computer Engineering, National Technological University of Athens, Athens, Greece
Abstract
As more and more datasets become available, their utilization in different applications increases in popularity. Their volume and production rate, however, means that their quality and content control is in most cases non-existing, resulting in many datasets that contain inaccurate information of low quality. Especially, in the field of conversational assistants, where the datasets come from many heterogeneous sources with no quality assurance, the problem is aggravated. We present here an integrated platform that creates task- and topic-specific conversational datasets to be used for training conversational agents. The platform explores available conversational datasets, extracts information based on semantic similarity and relatedness, and applies a weight-based score function to rank the information based on its value for the specific task and topic. The finalized dataset can then be used for the training of an automated conversational assistance over accurate data of high quality.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献