Unsupervised Estimation of Subjective Content Descriptions in an Information System

Author:

Bender Magnus1ORCID,Braun Tanya2ORCID,Möller Ralf1ORCID,Gehrke Marcel1ORCID

Affiliation:

1. Institute of Information Systems, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany

2. Computer Science Department, University of Münster, Einsteinstraße 62, D-48149 Münster, Germany

Abstract

Let us consider the following scenario: A human is working with a corpus of text documents. In this corpus, the human needs to know documents with similar content and highlight relevant locations in the retrieved documents. An information system displaying the contents of the corpus and providing an information retrieval agent will help the human. To perform information retrieval on the corpus, the agent used internally in the information system may need additional data associated with the documents. In order to support this, the so-called Subjective Content Descriptions (SCDs) provide additional location-specific data for text documents. SCDs are subjective in the sense that the agent associates data with sentences to reflect the beliefs of users. In our scenario, the agent needs SCDs referencing sentences of similar content across various documents in the corpus and most text documents are not associated with SCDs. Therefore, this paper presents UESM, the Unsupervised Estimator for SCD Matrices, an approach to associate any corpus with SCDs. In an evaluation, we show that the performance of UESM in estimating topics of similar content in the corpus is on par with Latent Dirichlet Allocation, while UESM provides the SCDs referencing sentences of similar content.

Funder

Understanding Written Artefacts: Material, Interaction and Transmission in Manuscript Cultures

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3