Deep Learning-Based Stair Segmentation and Behavioral Cloning for Autonomous Stair Climbing

Author:

Panchi Navid1,Agrawal Khush1,Patil Unmesh1,Gujarathi Aniket1,Jain Aman1,Namdeo Harsha1,Chiddarwar Shital S.1

Affiliation:

1. Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India

Abstract

Mobile robots are widely used in the surveillance industry, for military and industrial applications. In order to carry out surveillance tasks like urban search and rescue operation, the ability to traverse stairs is of immense significance. This paper presents a deep learning-based approach for semantic segmentation of stairs, behavioral cloning for stair alignment, and a novel mechanical design for an autonomous stair climbing robot. The main objective is to solve the problem of locomotion over staircases with the proposed implementation. Alignment of a robot with stairs in an image is a traditional problem, and the most recent approaches are centered around hand-crafted texture-based Gabor filters and stair detection techniques. However, we could arrive at a more scalable and robust pipeline for alignment schemes. The proposed deep learning technique eliminates the need for manual tuning of parameters of the edge detector, the Hough accumulator and PID constants. The empirical results and architecture of stair alignment pipeline are demonstrated in this paper.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection and Counting Vehicles in Parking Area using EasyOCR and DeepSORT;2024 IEEE 6th Symposium on Computers & Informatics (ISCI);2024-08-10

2. Multidimensional Deformable Object Manipulation Based on DN-Transporter Networks;IEEE Transactions on Intelligent Transportation Systems;2023-04

3. Staircase Detection, Characterization and Approach Pipeline for Search and Rescue Robots;Applied Sciences;2021-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3