Affiliation:
1. Department of Computer Science, University of Georgia, Athens, GA 30602, USA
Abstract
The volume of documents and online resources has been increasing significantly on the Web for many years. Effectively, organizing this huge amount of information has become a challenging problem. Tagging is a mechanism to aggregate information and a great step towards the Semantic Web vision. Tagging aims to organize, summarize, share and search the Web resources in an effective way. One important problem facing tagging systems is to automatically determine the most appropriate tags for Web documents. In this paper, we propose a probabilistic topic model that incorporates DBpedia knowledge into the topic model for tagging Web pages and online documents with topics discovered in them. Our method is based on integration of the DBpedia hierarchical category network with statistical topic models, where DBpedia categories are considered as topics. We have conducted extensive experiments on two different datasets to demonstrate the effectiveness of our method.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software