TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data

Author:

Rogers Jon1,Aygun Ramazan2,Etzkorn Letha1

Affiliation:

1. Department of Computer Science, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, USA

2. Department of Computer Science, Kennesaw State University, 1100 South Marietta Parkway SE, Marietta, Georgia 30060, USA

Abstract

Deduplication is a key component of the data preparation process, a bottleneck in the machine learning (ML) and data mining pipeline that is very time-consuming and often relies on domain expertise and manual involvement. Further, temporal data is increasingly prevalent and is not well suited to traditional similarity and distance-based deduplication techniques. We establish a fully automated, domain-independent deduplication model for temporal data domains, known as TemporalDedup, that infers the key attribute(s), applies a base set of deduplication techniques focused on value matches for key, non-key, and elapsed time, and further detects duplicates through inference of temporal ordering requirements using Longest Common Subsequence (LCS) for records of a shared type. Using LCS, we split each record’s temporal sequence into constrained and unconstrained sequences. We flag suspicious (errant) records that are non-adherent to the inferred constrained order and we flag a record as a duplicate if its unconstrained order, of sufficient length, matches that of another record. TemporalDedup was compared against a similarity-based Adaptive Sorted Neighborhood Method (ASNM) in evaluating duplicates for two disparate datasets: (1) 22,794 records from Sony’s PlayStation Network (PSN) trophy data, where duplication may be indicative of cheating, and (2) emergency declarations and government responses related to COVID-19 for all U.S. states and territories. TemporalDedup (F1-scores of 0.971 and 0.954) exhibited combined sensitivities above 0.9 for all duplicate classes whereas ASNM (0.705 and 0.732) exhibited combined sensitivities below 0.2 for all time and order duplicate classes.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Temporal information retrieval using bitwise operators;Information Retrieval Journal;2023-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3