A Countermeasure Method Using Poisonous Data Against Poisoning Attacks on IoT Machine Learning

Author:

Chiba Tomoki1,Sei Yuichi1,Tahara Yasuyuki1,Ohsuga Akihiko1

Affiliation:

1. Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Abstract

In the modern world, several areas of our lives can be improved, in the form of diverse additional dimensions, in terms of quality, by machine learning. When building machine learning models, open data are often used. Although this trend is on the rise, the monetary losses since the attacks on machine learning models are also rising. Preparation is, thus, believed to be indispensable in terms of embarking upon machine learning. In this field of endeavor, machine learning models may be compromised in various ways, including poisoning attacks. Assaults of this nature involve the incorporation of injurious data into the training data rendering the models to be substantively less accurate. The circumstances of every individual case will determine the degree to which the impairment due to such intrusions can lead to extensive disruption. A modus operandi is proffered in this research as a safeguard for machine learning models in the face of the poisoning menace, envisaging a milieu in which machine learning models make use of data that emanate from numerous sources. The information in question will be presented as training data, and the diversity of sources will constitute a barrier to poisoning attacks in such circumstances. Every source is evaluated separately, with the weight of each data component assessed in terms of its ability to affect the precision of the machine learning model. An appraisal is also conducted on the basis of the theoretical effect of the use of corrupt data as from each source. The extent to which the subgroup of data in question can undermine overall accuracy depends on the estimated data removal rate associated with each of the sources described above. The exclusion of such isolated data based on this figure ensures that the standard data will not be tainted. To evaluate the efficacy of our suggested preventive measure, we evaluated it in comparison with the well-known standard techniques to assess the degree to which the model was providing accurate conclusions in the wake of the change. It was demonstrated during this test that when the innovative mode of appraisal was applied, in circumstances in which 17% of the training data are corrupt, the degree of precision offered by the model is 89%, in contrast to the figure of 83% acquired through the traditional technique. The corrective technique suggested by us thus boosted the resilience of the model against harmful intrusion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Node Compromising Detection to Mitigate Poisoning Attacks in IoT Networks;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

2. Study on Poisoning Attacks: Application Through an IoT Temperature Dataset;2023 IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE);2023-12-14

3. Edge Intelligence*;Security and Privacy Vision in 6G;2023-07-21

4. Bilinear Pooling With Poisoning Detection Module for Automatic Side Scan Sonar Data Analysis;IEEE Access;2023

5. ENIDrift: A Fast and Adaptive Ensemble System for Network Intrusion Detection under Real-world Drift;Proceedings of the 38th Annual Computer Security Applications Conference;2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3