INTEGRABILITY IN QCD AND BEYOND

Author:

BELITSKY A. V.12,BRAUN V. M.3,GORSKY A. S.4,KORCHEMSKY G. P.5

Affiliation:

1. Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504, USA

2. Department of Physics, University of Maryland at College Park, College Park, MD 20742-4111, USA

3. Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

4. Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow, 117259, Russia

5. Laboratoire de Physique Théorique, (Unité Mixte de Recherche du CNRS (UMR 8627).), Université de Paris XI, 91405 Orsay Cédex, France

Abstract

Yang–Mills theories in four space–time dimensions possess a hidden symmetry which does not exhibit itself as a symmetry of classical Lagrangians but is only revealed on the quantum level. It turns out that the effective Yang–Mills dynamics in several important limits is described by completely integrable systems that prove to be related to the celebrated Heisenberg spin chain and its generalizations. In this review we explain the general phenomenon of complete integrability and its realization in several different situations. As a prime example, we consider in some detail the scale dependence of composite (Wilson) operators in QCD and super-Yang–Mills (SYM) theories. High-energy (Regge) behavior of scattering amplitudes in QCD is also discussed and provides one with another realization of the same phenomenon that differs, however, from the first example in essential details. As the third example, we address the low-energy effective action in a [Formula: see text] SYM theory which, contrary to the previous two cases, corresponds to a classical integrable model. Finally, we include a short overview of recent attempts to use gauge/string duality in order to relate integrability of Yang–Mills dynamics with the hidden symmetry of a string theory on a curved background.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3