DETECTION OF GRAVITATIONAL WAVES FROM INFLATION

Author:

KAMIONKOWSKI MARC1,JAFFE ANDREW H.2

Affiliation:

1. California Institute of Technology, Mail Code 130-33, Pasadena, CA 91125, USA

2. Center for Particle Astrophysics, 301 LeConte Hall, University of California, Berkeley, CA 94720, USA

Abstract

Recent measurements of temperature fluctuations in the cosmic microwave background (CMB) indicate that the Universe is flat and that large-scale structure grew via gravitational infall from primordial adiabatic perturbations. Both od these observations seem to indicate that we are on the right track with inflation. But what is the new physics responsible for inflation? This question can be answered with observations of the polarization of the CMB. Inflation predicts robustly the existence of a stochastic background of cosmological gravitational waves with an amplitude proportional to the square of the energy scale of inflation. This gravitational-wave background induces a unique signature in the polarization of the CMB. If inflation took place at an energy scale much smaller than that of grand unification, then the signal will be too small to be detectable. However, if inflation had something to do with grand unification or Planck-scale physics, then the signal is conceivably detectable in the optimistic case by the Planck satellite, or if not, then by a dedicated post-Planck CMB polarization experiment. Realistic developments in dector technology as well as a proper scan strategy could produce such a post-Planck experiment that would improve on Planck's sensitivity to the gravitational-wave background by several orders of magnitude in a decade timescale.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Performance of a 30/40 GHz Diplexed Focal Plane for the BICEP Array;The Astrophysical Journal Supplement Series;2024-04-29

2. The optical bread-board models of the LiteBIRD Medium & High Frequency Telescope;Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI;2022-08-31

3. A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope;The Astrophysical Journal;2022-03-01

4. Geometric inflation and dark energy with axion F(R) gravity;Physical Review D;2020-02-05

5. Clustering fossil from primordial gravitational waves in anisotropic inflation;Journal of Cosmology and Astroparticle Physics;2015-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3