Affiliation:
1. Department of Natural Science, Faculty of Education, Hirosaki University, Bunkyo-cho 1, Hirosaki, Aomori 036-8560, Japan
Abstract
We define string geometry: spaces of superstrings including the interactions, their topologies, charts, and metrics. Trajectories in asymptotic processes on a space of strings reproduce the right moduli space of the super-Riemann surfaces in a target manifold. Based on the string geometry, we define Einstein–Hilbert action coupled with gauge fields, and formulate superstring theory nonperturbatively by summing over metrics and the gauge fields on the spaces of strings. This theory does not depend on backgrounds. The theory has a supersymmetry as a part of the diffeomorphisms symmetry on the superstring manifolds. We derive the all-order perturbative scattering amplitudes that possess the super moduli in type IIA, type IIB and SO(32) type I superstring theories from the single theory, by considering fluctuations around fixed backgrounds representing type IIA, type IIB and SO(32) type I perturbative vacua, respectively. The theory predicts that we can see a string if we microscopically observe not only a particle but also a point in the space–time. That is, this theory unifies particles and the space–time. This paper is a summary version of Ref. 1.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献