Affiliation:
1. Spinoza Instituut, Leuvenlaan 4, 3584HE Utrecht, The Netherlands
Abstract
We study the relation of the spin-statistics theorem to the geometric structures on phase space, which are introduced in quantization procedures (namely a U(1) bundle and connection). The relation can be proved in both the relativistic and the nonrelativistic domain (in fact for any symmetry group including internal symmetries) by requiring that the exchange can be implemented smoothly by a class of symmetry transformations that project in the phase space of the joint system system. We discuss the interpretation of this requirement, stressing the fact that any distinction of identical particles comes solely from the choice of coordinates — the exchange then arises from suitable change of coordinate system. We then examine our construction in the geometric and the coherent-state-path-integral quantization schemes. In the appendix we apply our results to exotic systems exhibiting continuous "spin" and "fractional statistics." This gives novel and unusual forms of the spin-statistics relation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献