Affiliation:
1. Institute of Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław, Poland
Abstract
The formalism of nilpotent mechanics is introduced in the Lagrangian and Hamiltonian form. Systems are described using nilpotent, commuting coordinates η. Necessary geometrical notions and elements of generalized differential η-calculus are introduced. The so-called s-geometry, in a special case when it is orthogonally related to a traceless symmetric form, shows some resemblances to the symplectic geometry. As an example of an η-system the nilpotent oscillator is introduced and its supersymmetrization considered. It is shown that the R-symmetry known for the graded superfield oscillator also present here for the supersymmetric η-system. The generalized Poisson bracket for (η, p)-variables satisfies modified Leibniz rule and has nontrivial Jacobiator.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献