Affiliation:
1. Theory Division, CERN, CH-1211 Geneva 23, Switzerland
2. Departamento de Física de Partículas da Universidade de Santiago, E-15706 Santiago de Compostela, Spain
Abstract
We study the spectrum of density fluctuations of fractional Hall fluids in the context of the noncommutative hydrodynamical model of Susskind. We show that, within the weak-field expansion, the leading correction to the noncommutative Chern–Simons Lagrangian (a Maxwell term in the effective action), destroys the incompressibility of the Hall fluid due to strong UV/IR effects at one loop. We speculate on possible relations of this instability with the transition to the Wigner crystal, and conclude that calculations within the weak-field expansion must be carried out with an explicit ultraviolet cutoff at the noncommutativity scale. We point out that the noncommutative dipoles exactly match the spatial structure of the Halperin–Kallin quasiexcitons. Therefore, we propose that the noncommutative formalism must describe accurately the spectrum at very large momenta, provided no weak-field approximations are made. We further conjecture that the noncommutative open Wilson lines are "vertex operators" for the quasiexcitons.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献