On the Schrödinger spectrum of a hydrogen atom with electrostatic Bopp–Landé–Thomas–Podolsky interaction between electron and proton

Author:

Carley Holly K.1ORCID,Kiessling Michael K.-H.2,Perlick Volker3

Affiliation:

1. Department of Mathematics, New York City College of Technology, CUNY, 300 Jay Street, Brooklyn, New York, NY 11201, USA

2. Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854, USA

3. ZARM, University of Bremen, Am Fallturm, 28159 Bremen, Germany

Abstract

The Schrödinger spectrum of a hydrogen atom, modeled as a two-body system consisting of a point electron and a point proton, changes when the usual Coulomb interaction between point particles is replaced with an interaction which results from a modification of Maxwell’s law of the electromagnetic vacuum. Empirical spectral data thereby impose bounds on the theoretical parameters involved in such modified vacuum laws. In the present paper the vacuum law proposed, in the 1940s, by Bopp, Landé–Thomas, and Podolsky (BLTP) is scrutinized in such a manner. The BLTP theory hypothesizes the existence of an electromagnetic length scale of nature — the Bopp length [Formula: see text] —, to the effect that the electrostatic pair interaction deviates significantly from Coulomb’s law only for distances much shorter than [Formula: see text]. Rigorous lower and upper bounds are constructed for the Schrödinger energy levels of the hydrogen atom, [Formula: see text], for all [Formula: see text] and [Formula: see text]. The energy levels [Formula: see text], [Formula: see text], and [Formula: see text] are also computed numerically and plotted versus [Formula: see text]. It is found that the BLTP theory predicts a nonrelativistic correction to the splitting of the Lyman-[Formula: see text] line in addition to its well-known relativistic fine-structure splitting. Under the assumption that this splitting does not go away in a relativistic calculation, it is argued that present-day precision measurements of the Lyman-[Formula: see text] line suggest that [Formula: see text] must be smaller than [Formula: see text]. Finite proton size effects are found not to modify this conclusion. As a consequence, the electrostatic field energy of an elementary point charge, although finite in BLTP electrodynamics, is much larger than the empirical rest mass ([Formula: see text]) of an electron. If, as assumed in all “renormalized theories” of the electron, the empirical rest mass of a physical electron is the sum of its bare rest mass and its electrostatic field energy, then in BLTP electrodynamics the electron has to be assigned a negative bare rest mass.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3