Artificial neural network for identification of short-lived particles in the CBM experiment

Author:

Banerjee Arundhati1,Kisel Ivan2345,Zyzak Maksym5

Affiliation:

1. Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

2. Goethe University Frankfurt, Theodor-W.-Adorno-Platz 1, Frankfurt, 60323, Germany

3. Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, Frankfurt, 60438, Germany

4. Helmholtz Research Academy Hesse for FAIR, Max-von-Laue-Str. 12, Frankfurt, 60438, Germany

5. GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, Darmstadt, 64291, Germany

Abstract

In high energy particle colliders, detectors record millions of points of data during collision events. Therefore, good data analysis depends on distinguishing collisions which produce particles of interest (signal) from those producing other particles (background). Machine learning algorithms in the current times have become popular and useful as the method of choice for such large scale data analysis. In this work, we propose and implement an artificial neural network architecture to achieve the task of identifying precisely the parent particles from all the candidates arising out of track reconstruction from collision data in the future Compressed Baryonic Matter (CBM) experiment. Our framework performs comparably to the existing computational algorithm for this task even with a simple network architecture.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3