Affiliation:
1. Department of Physics, University of Alberta, Edmonton, Canada, T6G 2J1, Canada
Abstract
We present a comprehensive review of the most fundamental and practical aspects of thermo-field dynamics (TFD), including some of the most recent developments in the field. To make TFD fully consistent, some suitable changes in the structure of the thermal doublets and the Bogoliubov transformation matrices have been made. A close comparison between TFD and the Schwinger-Keldysh closed time path formalism (SKF) is presented. We find that TFD and SKF are in many ways the same in form; in particular, the two approaches are identical in stationary situations. However, TFD and SKF are quite different in time-dependent nonequilibrium situations. The main source of this difference is that the time evolution of the density matrix itself is ignored in SKF while in TFD it is replaced by a time-dependent Bogoliubov transformation. In this sense TFD is a better candidate for time-dependent quantum field theory. Even in equilibrium situations, TFD has some remarkable advantages over the Matsubara approach and SKF, the most notable being the Feynman diagram recipes, which we will present. We will show that the calculations of two-point functions are simplified, instead of being complicated, by the matrix nature of the formalism. We will present some explicit calculations using TFD, including space-time inhomogeneous situations and the vacuum polarization in equilibrium relativistic QED.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献