Affiliation:
1. Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel
2. Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545, USA
Abstract
For zero energy, E=0, we derive exact, quantum solutions for all power-law potentials, V(r)=−γ/rν, with γ>0 and −∞<ν<∞. The solutions are, in general, Bessel functions of powers of r. For ν>2 and l≥1 the solutions are normalizable. Surprisingly, the solutions for ν<−2, which correspond to highly repulsive potentials, are also normalizable, for all l≥0. For these |ν|>2 the partial-wave Hamiltonians, Hl, have overcomplete sets of normalizable eigensolutions. We discuss how to obtain self-adjoint extensions of Hl such that the above E=0 solutions become included in their domains. When 2>ν≥−2 the E=0 solutions are not square-integrable. The ν=2 solutions are also unnormalizable, but are exceptional solutions. We also find that, by increasing the dimension of the Schrödinger equation beyond 4, an effective centrifugal barrier is created which is sufficient to cause binding when E=0 and ν>2, even for l=0. We discuss the physics of the above solutions and compare them to the corresponding classical solutions, which are derived elsewhere.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献