Deep learning for quark–gluon plasma detection in the CBM experiment

Author:

Sergeev Fedor1,Bratkovskaya Elena23,Kisel Ivan2453ORCID,Vassiliev Iouri3

Affiliation:

1. Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141701, Russian Federation, Russia

2. Goethe University Frankfurt, Theodor-W.-Adorno-Platz 1, Frankfurt, 60323, Germany

3. GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, Darmstadt, 64291, Germany

4. Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, Frankfurt, 60438, Germany

5. Helmholtz Research Academy Hesse for FAIR, Max-von-Laue-Str. 12, Frankfurt, 60438, Germany

Abstract

Classification of processes in heavy-ion collisions in the CBM experiment (FAIR/GSI, Darmstadt) using neural networks is investigated. Fully-connected neural networks and a deep convolutional neural network are built to identify quark–gluon plasma simulated within the Parton-Hadron-String Dynamics (PHSD) microscopic off-shell transport approach for central Au+Au collision at a fixed energy. The convolutional neural network outperforms fully-connected networks and reaches 93% accuracy on the validation set, while the remaining only 7% of collisions are incorrectly classified.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring QCD matter in extreme conditions with Machine Learning;Progress in Particle and Nuclear Physics;2024-02

2. Neural-Network-Based Quark–Gluon Plasma Trigger for the CBM Experiment at FAIR;Algorithms;2023-07-18

3. Modelling relativistic heavy-ion collisions with dynamical transport approaches;Progress in Particle and Nuclear Physics;2022-01

4. An equation-of-state-meter for CBM using PointNet;Journal of High Energy Physics;2021-10

5. Learning impurity spectral functions from density of states;Journal of Physics: Condensed Matter;2021-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3