FRACTALS AND THE QUANTUM THEORY OF SPACETIME

Author:

NOTTALE LAURENT1

Affiliation:

1. Laboratoire d'Astrophysique Extragalactique et de Cosmologie. DAEC-Observatoire de Paris-Meudon. F-92195, Meudon Principal Cedex, France

Abstract

We review in this paper the first results obtained in an attempt at understanding quantum space-time based on a new extension of the principle of relativity and on the geometrical concept of fractals. We present methods for dealing with the nondifferentiability and the infinities of fractals, as a first step towards the definition and intrinsic description of a fractal space. After having recalled that the Heisenberg relations imply a transition of spatial coordinates of a particle to fractal dimension 2 about the de Broglie length λ = ħ/p, it is suggested that a similar transition occurs for temporal coordinates about the de Broglie time τ = ħ/E. We then investigate the hypothesis that the microstructure of space-time is of fractal nature, and that the observed properties of the quantum world at a given resolution result from the smoothing of curvilinear coordinates of such a spacetime projected into classical spacetime. Along this road, we successively study the link of fractal dimension 2 to spin, we give first hints on the expected behavior of families of fractal geodesics, and we exhibit a general class of fractal structures which is assumed to yield a lowest order description of the quantum vacuum. The links between the new approach and both special and general relativity are touched upon. We finally suggest that the anomalous peaks recently observed in the spectra of positrons from supercritical heavy ion collisions may be understood in this context.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3