A NOTE ON GAUSSIAN INTEGRALS OVER PARA-GRASSMANN VARIABLES

Author:

CUGLIANDOLO LETICIA F.12,LOZANO G. S.3,MORENO E. F.4,SCHAPOSNIK F. A.4

Affiliation:

1. Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cédex 05, France

2. Laboratoire de Physique Théorique et Hautes Energies Jussieu, Tour 16, 1er étage, 4 Place Jussieu, 75252 Paris Cédex 05, France

3. Departamento de Física, FCEyN, Universidad de Buenos Aires, Pab. 1, Ciudad Universitaria, Buenos Aires, Argentina

4. Departamento de Física, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina

Abstract

We discuss the generalization of the connection between the determinant of an operator entering a quadratic form and the associated Gaussian path-integral valid for Grassmann variables to the para-Grassmann case [θp+1=0 with p=1(p>1) for Grassmann (para-Grassmann) variables]. We show that the q-deformed commutation relations of the para-Grassmann variables lead naturally to consider q-deformed quadratic forms related to multiparametric deformations of GL (n) and their corresponding q-determinants. We suggest a possible application to the study of disordered systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Grassmann variables for quantum kit (k-level) systems and Barut–Girardello coherent states for su(r + 1) algebras;Journal of Mathematical Physics;2017-05

2. Multi-mode entangled states represented as Grassmannian polynomials;Quantum Information Processing;2016-06-14

3. Q-boson coherent states and para-Grassmann variables for multi-particle states;Journal of Physics A: Mathematical and Theoretical;2012-11-19

4. Para-Grassmannian Coherent and Squeezed States for Pseudo-Hermitian q-Oscillator and their Entanglement;Symmetry, Integrability and Geometry: Methods and Applications;2011-08-25

5. Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems;Symmetry, Integrability and Geometry: Methods and Applications;2011-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3