MODELING THE FLYBY ANOMALIES WITH DARK MATTER SCATTERING: UPDATE WITH ADDITIONAL DATA AND FURTHER PREDICTIONS

Author:

ADLER STEPHEN L.1

Affiliation:

1. Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

Abstract

We continue our exploration of whether the flyby anomalies can be explained by scattering of spacecraft nucleons from dark matter gravitationally bound to the Earth, with the addition of data from five new flybys to that from the original six. We continue to use our model in which inelastic and elastic scatterers populate shells generated by the precession of circular orbits with normals tilted with respect to the Earth's axis. With 11 data points and eight parameters in the model, a statistically meaningful fit is obtained with a chi-squared of 2.7. We give plots of the anomalous acceleration along the spacecraft trajectory, and the cumulative velocity change, for the five flybys which exhibit a significant nonzero anomaly. We also discuss implications of the fit for dark matter–nucleon cross-sections, give the prediction of our fit for the anomaly to be expected from the future Juno flyby, and give predictions of our fit for flyby orbit orientation changes. In addition, we give formulas for estimating the flyby temperature increase caused by dark matter inelastic scattering, and for the fraction of flyby nucleons undergoing such scatters. Finally, for circular satellite orbits, we give a table of predicted secular changes in orbit radius. These are much too large to be reasonable — comparing with data for COBE and GP-B supplied to us by Edward Wright (after the first version of this paper was posted), we find that our model predicts changes in orbit radius that are too large by many orders of magnitude. So the model studied here is ruled out. We conclude that further modeling of the flyby anomalies must simultaneously attempt to fit constraints coming from satellite orbits.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3