AFFINE SOLITONS: A RELATION BETWEEN TAU FUNCTIONS, DRESSING AND BÄCKLUND TRANSFORMATIONS

Author:

BABELON OLIVIER1,BERNARD DENIS2

Affiliation:

1. Laboratoire de Physique Théorique et Hautes Energies, (Laboratoire associé au CNRS.) Université Pierre et Marie Curie, Tour 16 1er étage, 4 place Jussieu, 75252 Paris, cedex 05-, France

2. Service de Physique Théorique de Saclay, (Laboratoire de la Direction des Sciences de la Matière du Commisariat à l’Energie Atomique.) F-91191, Gif-sur-Yvette, France

Abstract

We reconsider the construction of solitons by dressing transformations in the sine-Gordon model. We show that the N-soliton solutions are in the orbit of the vacuum, and we identify the elements in the dressing group which allow us to build the N-soliton solutions from the vacuum solution. The dressed τ functions can be computed in two different ways: either using adjoint actions in the affine Lie algebra [Formula: see text], and this gives the relation with the Bäcklund transformations, or using the level-one representations of the affine Lie algebra [Formula: see text], and this directly gives the formulae for the τ functions in terms of vertex operators.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SKdV, SmKdV flows and their supersymmetric gauge-Miura transformations;Open Communications in Nonlinear Mathematical Physics;2024-04-26

2. Negative flows of generalized KdV and mKdV hierarchies and their gauge-Miura transformations;Journal of High Energy Physics;2023-08-24

3. A Simple Model of Double Dynamics on Lie Groups;Springer Proceedings in Physics;2019

4. Doubling, T-Duality and Generalized Geometry: a simple model;Journal of High Energy Physics;2018-08

5. Quasi-integrability in deformed sine-Gordon models and infinite towers of conserved charges;Communications in Nonlinear Science and Numerical Simulation;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3